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SIMILITUDE CONDITIONS AND DIMENSIONAL ANALYSIS

CHOOSE

- Geometry

- Materials

- Loading / actions intensity

- Load / action application history

EXTRAPOLATION OF RESULTS TO PROTOTYPE

SMALL SCALE MODELS AND SIMILITUDE THEORY

A PHYSICS LAW IS EXPRESSED BY PHYSICAL QUANTITIES WITH CERTAIN DIMENSIONS

- Length, L

- Force, F

- Time, t

- Temperature, q

- Moment, FL

- Velocity, LT-1

- Acceleration, LT-2

- Stress, FL-2

- Linear thermal dilat. 
coeff., q-1

- Strain, 1 
(dimensionless)

Dimensions are 
expressed in certain units.

Ex.: Force (dimension) 
may be expressed in 
Newton (unit).

PHYSICS LAWS ARE HOMOGENEOUS

In physics laws, dimensions are coherent – the same in all equation terms.

Empirical laws may not be homogeneous; the units of the intervening quantities must be defined.

SMALL SCALE MODELS AND SIMILITUDE THEORY

SIMILITUDE CONDITIONS AND DIMENSIONAL ANALYSIS
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Hazen-Williams empirical relationship (curve fitting) for the 
evaluation of pressure drop caused by friction in pipe flow

SMALL SCALE MODELS AND SIMILITUDE THEORY

PHYSICS LAWS ARE HOMOGENEOUS

In physics laws, dimensions are coherent – the same in all equation terms.

Empirical laws may not be homogeneous; in such case, the units of the intervening quantities 
must be previously defined.

SIMILITUDE CONDITIONS AND DIMENSIONAL ANALYSIS

Differential equation of a 1 d.o.f. oscillator with damping
Physics law, coherent dimensions

F = ma

-K u – C u’ + Q(t) = m u’’

M u’’ + C u’ + K u = Q

SMALL SCALE MODELS AND SIMILITUDE THEORY

PHYSICS LAWS ARE HOMOGENEOUS

In physics laws, dimensions are coherent – the same in all equation terms.

Empirical laws may not be homogeneous; the units of the intervening quantities must 
be defined.

SIMILITUDE CONDITIONS AND DIMENSIONAL ANALYSIS

Q(t)
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FUNDAMENTAL QUANTITIES

Static mechanical phenomena (2 fundamental 
quantities)

- Force, F
- Length, L

Dynamic mechanical phenomena (3 fundamental 
quantities)

- Force, F
- Length, L
- Time, t

Static mechanical phenomena with thermal
variations (3 fundamental quantities):

- Force, F
- Length, L
- Temperature, q

Dynamic mechanical phenomena with thermal
variations (4 fundamental quantities):

- Force, F
- Length, L
- Time, t
- Temperature, q

SMALL SCALE MODELS AND SIMILITUDE THEORY

Buckingham theorem (P theorem)

If a physical phenomenon involves n quantities, generically indicated as Ai (i=1,2,...,n), the
functional relationship that rules the phenomenon, F(A1, A2 ..... , An) = 0, may be expressed by
a relationship between (n-q) dimensionless parameters, F(P1, P2 ..... , Pn-q) = 0, in which q is
the number of physically (dimensionally) independent quantities that are involved in the
phenomenon (q = 2 in static phenomena without DT; q = 3 in dynamic phenomena without DT,
...).

If the set of quantities Ai is reordered in such a manner that the fundamental quantities (those
whose scales are chosen), X, Y, Z, correspond to An-2, An-1, An, than the dimensionless
parameters Pi (with i=1, n-3) are in the form

Pi = (1)

Exponents ai, bi e gi are determined by making Pi dimensionless.

The similitude between a prototype and its model, for the set of quantities (Ai) involved in the
studied phenomenon, implies that, for all those quantities,

(Pi)m = (Pi)p (2)

From (1) and (2) the scale lAi may be obtained for any quantity Ai by:

lAi = (Ai)m / (Ai)p = (lX)ai ( lY ) bi ( lZ ) gi (3)

Ai

X
ai Y

b i Z
g i

CONDIÇÕES DE SEMELHANÇA E ANÁLISE DIMENSIONAL

SMALL SCALE MODELS AND SIMILITUDE THEORY
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F = ma

-K u – C u’ + Q(t) = m u’’

M u’’ + C u’ + K u – Q = 0

SMALL SCALE MODELS AND SIMILITUDE THEORY

SIMILITUDE CONDITIONS AND DIMENSIONAL ANALYSIS

Q(t)

M u’’ + C u’ + K u – Q = 0

Obtaining ai, bi, gi
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a

Obtaining the scales for quantities Ai
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Equality of dimensionless coefficients between model and prototype

SMALL SCALE MODELS AND SIMILITUDE THEORY

- Any phenomenon can be reproduced on a scale different from the real 
one, even if the laws of physics (algebraic expressions) governing it are 
not known (eg relationship between wind speed and drag force on a 
bridge deck), provided that the respective dimensionless coefficients 
have the same value in the model and in the prototype, i.e., as long as 
the scale ratios of all quantities involved in this phenomenon are 
respected.

- The number of scales that can be chosen is equal to the number of 
fundamental quantities (number of dimensionally independent 
quantities) involved in the phenomenon under study. In a dynamic test, 
for example, one can choose the geometric scale (L), the modulus of 
elasticity (E) (choice of material) and the frequency scale (f), while all 
other parameters (Ai) involved in the phenomenon have to respect the 
scales obtained by:

CONSEQUENCES OF BUCKINGHAM THEOREM

lAi
= (lL)ai ( lE )bi ( lf )gi

SMALL SCALE MODELS AND SIMILITUDE THEORY
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Example: Study of the static
behaviour of a shell structure

Fundamental quantities (chosen):

SMALL SCALE MODELS AND SIMILITUDE THEORY

Data:

- Static test in the elastic range

- Fundamental quantities: F - Force, L - Length; t - time is not involved

- Quantities to obtain: Stress s, strain e, displacement d

Fundamental quantities (chosen):

- L, choosing the geometric scale

SMALL SCALE MODELS AND SIMILITUDE THEORY

Example: Study of the static
behaviour of a shell structure

Data:

- Static test in the elastic range

- Fundamental quantities: F - Force, L - Length; t - time is not involved

- Quantities to obtain: Stress s, strain e, displacement d
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Data:

- Static test in the elastic range

- Fundamental quantities: F - Force, L - Length; t - time is not involved

- Quantities to obtain: Stress s, strain e, displacement d

Fundamental quantities (chosen):

- L, choosing the geometric scale

- E, choosing model’s material

SMALL SCALE MODELS AND SIMILITUDE THEORY

Example: Study of the static
behaviour of a shell structure

t L w h E n g q Q s e

F 0 0 0 0 1 - 1 1 1 1 -

L 1 1 1 1 -2 - -3 -2 0 -2 -

Exponents of different quantities written as a function of F and L

SMALL SCALE MODELS AND SIMILITUDE THEORY
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Geometry:

Linear dimension, displacement: (L): lL

Area (L2): lL
2

Inertia (L4): lL
4

Angular variation (-): 1

Dimensionless coefficient

001012101100010101 EL

ε

EL

σ

EL

Q

EL

q

ELEL

ν

EL

h

EL

w

EL

t

g

SMALL SCALE MODELS AND SIMILITUDE THEORY

Scales

Materials:

Young modulus (FL-2): lE

Stress (FL-2): lE

Poisson ratio (-): 1

Strain (-): 1

Specific weight (FL-3): lE lL
-1

Scales

SMALL SCALE MODELS AND SIMILITUDE THEORY

Dimensionless coefficient
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Coeficientes adimensionais

Loads, internal forces:

Conc. Load., shear force (F): lE lL
2

Pressure, distr. load (FL-2): lE

Distributed load (FL-1): lE lL

Moment (FL): lE lL
3
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Scales

SMALL SCALE MODELS AND SIMILITUDE THEORY

NOTES ON SCALES

- The strain scale is unity because the quantity is dimensionless: 
equal strains in the model and prototype

- Poisson ratio scale is unity because the quantity is
dimensionless: model material must have same n of prototype

- The Young modulus is equal to the plane distributed load scale: 
qm = qp Em/Ep Em low => qm low

- The effect of self weight must be analysed considering that
lr = lE/lL => lL = lE / lr <=> rm = rp (lE/lL)

- if the material is the same lE=1, lr=1 => lL=1 (full scale)

- to respect the self weight scale rm = rp (lE/lL)

Ex. lE = 3 GPa (perspex) / 30 GPa (concrete) = 1/10; 
lL = 1/40   => rm =4 rp => application of additional loads

to respect the self weight scale

SMALL SCALE MODELS AND SIMILITUDE THEORY
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SMALL SCALE MODELS AND SIMILITUDE THEORY

FABRICATION OF SMALL SCALE MODELS

LNEC

FABRICATION OF THE
SMALL SCALE MODEL

EXPERIMENTAL 
ANALYSIS

EXTRAPOLATION OF
RESULTS TO PROTOTYPE

ANALYSIS OF MECHANICAL PHENOMENA
IN SMALL SCALE MODELS

- SCALES SELECTION
- MATERIALS SELECTION
- DIMENSIONAL ANALYSIS

- TEST SET UP
- ACTIONS APPLICATION (LOADS, 
ACCELERATIONS, WIND FLOW, WATER
FLOW,...)
- CONTROL AND RECORDIND OF TEST
PARAMETERS (LOADS, DISPLACEMENTS, 
...)

- DIMENSIONAL ANALYSIS / SCALES

SMALL SCALE MODELS AND SIMILITUDE THEORY
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WHEN TO USE SMALL SCALE MODELS?
Important and complex structures where analytical / numerical methods
are not capable of satisfactorily reproducing the relevant phenomena.

Exs.:

- Post-elastic / near rupture phases of structural behaviour.

- Response to special actions – wind, non-linear behaviour of structures
subjected to earthquakes, hydraulic flow, impacts, explosions, ...

- Before: analysis of hyperstatic structures, analysis of 3D structures.

LNEC

SMALL SCALE MODELS AND SIMILITUDE THEORY

TYPES OF STRUCTURAL TESTS

- Static

- Dynamic 

. Shaking table

. Dynamic actuators / reaction wall

. Jacks (slow response) / reaction wall 
(pseudo-dynamic tests)

- Wind tunnel

. Shape coefficients

. Aerodynamic (in)stability

- Others: Hydraulic, explosions, impacts (eg. crash 
tests involving planes), ...

SMALL SCALE MODELS AND SIMILITUDE THEORY
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TYPES OF BEHAVIOUR

- Elastic (complex actions – wind, ...)

- Non linear (strength tests / rupture)

TEST SETUP

- Planning

- Analysis of similitude conditions
(scales and materials)

- Fabrication process

- Loading system

- Measuring equipment

SMALL SCALE MODELS AND SIMILITUDE THEORY

SMALL SCALE MODELS AND SIMILITUDE THEORY

MODEL FABRICATION

1) GEOMETRIC SCALE AND MATERIAL SELECTION

- Obtaining an adequate deformability

- Using an economic load application system

- Adequacy of the available measuring equipment

- Control / loading process

- Scale effects / non-dimensional parameters

25
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MODEL FABRICATION

2) MATERIAL CHARACTERISTICS

- Homogeneity

- Isotropy / anisotropy

- Poisson ratio (close to real)

- Easy to fabricate

- Economy

SMALL SCALE MODELS AND SIMILITUDE THEORY

MODEL FABRICATION

3) MATERIALS COMMONLY USED

- Plastics – elastic behaviour in the short term

- Admixtures of gypsum and diatomite – elastic
behaviour, complex shapes (eg. dams)

- Steel – elastic and elastic-plastic behaviour

- Micro concrete (based on gypsum or Portland cement) 
– non-linear behaviour (material se behaviour, cracking). 
Steel reinforcement in concrete.

SMALL SCALE MODELS AND SIMILITUDE THEORY
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- Easy to work

- Homogeneity

- Low E => lower loading

(E ~ 3 GPa)

- Reasonable costs

- Creep / visocosity

- E varies with load application velocity

- High Poisson ratio (n ~0,4)

- High linear expansion thermal coeficiente

MODEL FABRICATION

PLASTICS (elastic behaviour at the short term)

PLASTICS

Termoplastic (plates, profiles; non mouldable):
Metil-metacrilato – Perspex, Plexiglas, Lucite
Policloreto de vinil – PVC

Thermosetting (mouldable): 
Epoxy resins (fillers – adjusting n, creep,...)
Polyester resins (idem)
Phenolic resins

SMALL SCALE MODELS AND SIMILITUDE THEORY

- Easy to work (sculp)

- Homogeneity

- Low E, low strength => lower loading

- Allows complex shapes

- More fragile s-e behaviour than dam concrete

- Higher stension/scompression ratio than dam 
concrete

ADMIXTURES OF GYPSUM AND DIATOMITE

SMALL SCALE MODELS AND SIMILITUDE THEORY

MODEL FABRICATION

Jorge Gomes, LNEC
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- Homogeneity

- High E => high loads

STEEL (elastic behaviour)

- Easy to work

- Homogeneity

- Lower E => lower loads (E = 70 GPa)

- n = 0,45

ALUMINIUM (elastic behaviour)

SMALL SCALE MODELS AND SIMILITUDE THEORY

MODEL FABRICATION

- Easy to work

- Homogeneity

- Post-elastic behaviour

- Composition fine tuning / s-e similitude in 
tension (cracking) and compression (strength) 
– composition tests

- Concrete reinforcement and se similitude 
(ductility, atrength)

- Fabrication (reinforcement, formwork)

MICRO CONCRETE (post elastic / rupture behaviour

Binders: Portland cement
or gypsum

Aggregates: Quartz powder, 
sand, fine aggregates (rolled

stone pumice stone)

SMALL SCALE MODELS AND SIMILITUDE THEORY

MODEL FABRICATION
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- Identical se behaviour: yield and ultimate strength; shape of se diagram, 
ductility.

- Steel concrete adherence (rusty bars, hammered bars, corrugated bars, 
filleted bars,...). Difficult to evaluate at the prototype. Difficult to simulate. Pull-out
tests. Tension tests on reinforced concrete ties – spacing between primary
cracks should comply with geometric scale.

- Stirrups don’t need to respect the similitude conditions related to adhesion to 
concrete.

MICRO CONCRETE – aspects to consider for reinforcement bars

1 2 3 4

1 – Hammered bar: different se curve

2 – Filleted bar: excessive adherence

3 – Plain bar: insufficient adherence

4 – Corrugated bar: adequate

5 – Rusty bar: irregular adherence

SMALL SCALE MODELS AND SIMILITUDE THEORY

MODEL FABRICATION

Steel-concrete adhesion

Tension tests in reinforced concrete ties

SMALL SCALE MODELS AND SIMILITUDE THEORY

33

34



18

- Elements used: prestress wires; piano strings; helical
threaded steel bars.

- Pre-tension vs. post-tension:

- In pre-tension, adherence similitude is of utmost
importance; 

- In post-tension, adequate anchoring systems must 
be considered.

- Prestress losses (short term and long term) must be
adequately reproduced.

MICRO CONCRETE – aspects to consider for prestress

SMALL SCALE MODELS AND SIMILITUDE THEORY

MODEL FABRICATION

STRENGTH MODELS

- The model must present a similar behaviour until rupture / colapse, 
i.e., the se diagram must be identical

- It is usual to use concrete with the same ultimate strain er (le=1) but
with different strength sr (ls ≠ 1) which implies lE = ls ≠ 1 => it is not
possible to use the same concrete and steel in the model and in the
prototype.

SMALL SCALE MODELS AND SIMILITUDE THEORY
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CHOOSING THE GEOMETRIC SCALE

- Very large models: High loads; more expensive ecquipment; more 
space needed.

- Very small models: Difficult fabrication; requires more accurate 
instruments; more difficult to respect similitude conditions (scale 
effects).

- The chosen scale often depends on the characteristics of the 
materials commercially available (eg thickness of plastic sheets) or 
on the model exequibility (minimum concrete thickness).

SMALL SCALE MODELS AND SIMILITUDE THEORY

LOAD APPLICATION SYSTEMS

- Hydraulic jacks

- Screw jacks

- Sand bags

- Water

- …

APPLIED LOADS

- Applied loads

- Additional weights

- Dense materials
(theoretical)

- …

SELF WEIGHT

SMALL SCALE MODELS AND SIMILITUDE THEORY
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ANALYSIS OF RESULTS

- Material properties

- Quality of fabrication

- Errors in loading

- Measuring instruments

Errors between 10% to 15% 
are usually acceptable.

THE QUALITY OF THE RESULTS DEPENDS ON:

SMALL SCALE MODELS AND SIMILITUDE THEORY

SPECIAL CASES OF DYNAMIC PHENOMENON
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1) Cauchy similitude: when elastic forces are relevant

Ex.: Cable stayed bridges under wind loading

Cauchy number
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SPECIAL CASES OF DYNAMIC PHENOMENON

2) Froude similitude: when gravitic loads are relevant

Ex.: Suspension bridges (stiffness depends on gravitic loads) under wind loading.
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SPECIAL CASES OF DYNAMIC PHENOMENON
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3) Reynolds similitude: when viscous forces are relevant

Ex.: Wind tunnel. In structures with sharp edges, if Re > 300 to 1000, the Reynolds
similitude has not to be obeyed, as the locations of the boundary layer separation are
known (they do not depend on Reynolds number).
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SPECIAL CASES OF DYNAMIC PHENOMENON

Simultaneously follow Froude and Reynolds similitude

Conclusion: it is not possible to simultaneously follow
Froude and Reynolds similitude in small scale models.

2/1
LV llFroude

Reynolds 1
LV
ll

 1L l Full scale

Dynamic phenomena where gravitic and viscous forces are 
relevant: Ex. Suspension bridges with aerodynamic shaped deck.

SMALL SCALE MODELS AND SIMILITUDE THEORY

SPECIAL CASES OF DYNAMIC PHENOMENON
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Why does this happen? When imposing Froude and Reynolds similitude, 3 unity
scales were implicitly chosen, thus those quantities were taken as the
fundamental ones. Thus, the remaining scales, including the geometric scale, 
are also unitary.

)fluidoidadecosvisdaescala(1

)fluidoespecíficamassadaescala(1

)gravidadesaceleraçõedasescala(1g

l

l

l



r
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SPECIAL CASES OF DYNAMIC PHENOMENON

Simultaneously follow Froude and Reynolds similitude

2/1
LV llFroude

Reynolds 1
LV
ll

 1L l Full scale

VISIT TO THE LABORATORY OF HYDRAULICS

- Wave channel: project to use wave energy for electricity 
generation (Eng.º Miguel Lopes).

- Free surface channel: Analysis of desiltation in bridge piles. 

SMALL SCALE MODELS AND SIMILITUDE THEORY
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